Journal of Organometallic Chemistry, 179 (1979) 421–438 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

UNTERSUCHUNGEN ZUR REAKTIVITÄT VON METALL-π-KOMPLEXEN

XXIX *. SYNTHESEWEGE UND REAKTIVITÄT VON (Pd—Pd)- UND (Pt—Pt)-ZWEIKERNKOMPLEXEN DES TYPS (μ -C₅H₅)(μ -Allyl)M₂L₂

A. KÜHN und H. WERNER *

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.)

(Eingegangen den 19. März 1979)

Summary

The binuclear complexes $(Cp)(2-RC_3H_4)M_2L_2$ are formed either on reaction of equimolar amounts of $CpM(2-RC_3H_4)$ and L (where L is a tertiary phosphine. phosphite or arsine) or by a "1 + 1" addition of CpM(2-RC₃H₄) and ML₂. The NMR data suggest that in all complexes the cyclopentadienyl and allyl ligands are analogously coordinated to both metal atoms and thus sandwich the L-M-M-L unit. CpPd(2-ClC₃H₄) reacts with L to give CpPd(L)Cl and allene. The reaction of $CpPd(2-ClC_3H_4)$ and PdL_2 (L = $P(i-Pr)_3$) leads, probably via the intermediate $(Cp)(Cl)Pd_2L_2$, to the unsymmetrical binuclear complex Cp(L)Pd- $Pd(L)(2-ClC_3H_4)$ which isomerizes on heating to give $(2-CpC_3H_4)(Cl)Pd_2L_2$. The reactions of the (Pd-Pd)-complexes $(Cp)(2-RC_3H_4)Pd_2L_2$ with electrophilic and nucleophilic reagents proceed predominantly by cleavage of the metal-to-metal bond. With I_2 , HCl and MeI a mixture of mononuclear cyclopentadienylpalladium and allylpalladium complexes is always formed. In the reaction of (Cp)- $(2-MeC_3H_4)Pd_2L_2$ with HBr, however, the formation of binuclear complexes with bromide as bridging ligand occurs. An exchange of L is only observed in the reaction of $(Cp)(2-MeC_3H_4)Pd_2L_2$ with trimethylphosphine.

Zusammenfassung

Die Zweikernkomplexe (Cp) $(2-RC_3H_4)M_2L_2$ sind entweder durch Reaktion äquimolarer Mengen von CpM $(2-RC_3H_4)$ und L (wobei L ein tertiäres Phosphin, Phosphit oder Arsin ist) oder durch eine "1 + 1"-Addition von CpM $(2-RC_3H_4)$ und ML₂ zugänglich. Die NMR-Daten weisen darauf hin, dass in allen Komplexen

^{*} Für XXVIII. Mitteilung siehe Ref. 1.

die Cyclopentadienyl- und Allyl-Liganden gleichartig an beide Metallatome gebunden sind und somit die L-M-M-L-Einheit sandwichartig einschliessen. CpPd-(2-ClC₃H₄) reagiert mit L zu CpPd(L)Cl und Allen. Bei der Umsetzung von CpPd(2-ClC₃H₄) mit PdL₂ (L = P(i-Pr)₃) entsteht — wahrscheinlich über die Zwischenstufe (Cp)(Cl)Pd₂L₂ — zunächst der unsymmetrische Zweikernkomplex Cp(L)Pd-Pd(L)(2-ClC₃H₄), der beim Erwärmen zu (2-CpC₃H₄)(Cl)Pd₂L₂ mit elektrophilen und nucleophilen Agenzien verlaufen fast ausschliesslich unter Spaltung der Metall-Metall-Bindung. Mit I₂, HCl und MeI entsteht jeweils ein Gemisch einkerniger Cyclopentadienyl-palladium- und Allyl-palladium-Komplexe. Bei den Umsetzungen von (Cp)(2-MeC₃H₄)Pd₂L₂ mit HBr ist dagegen die Bildung von Zweikernkomplexen mit Bromid als Brückenligand nachweisbar. Ein Austausch von L wird nur bei der Reaktion von (Cp)(2-MeC₃H₄)Pd₂L₂ mit Trimethylphosphin beobachtet.

Einführung

Im Rahmen von Studien zur Reaktivität von Allyl-palladium-halogenid-Komplexen gegenüber Lewis-Basen hatten Kobayashi, Iitaka and Yamazaki 1972 eine zweikernige Verbindung der Zusammensetzung $(C_3H_5)(I)Pd_2(PPh_3)_2$ * isoliert, in der eine praktisch lineare P—Pd—Pd—P-Kette vorliegt und der Allylund der Iodo-Ligand die Palladiumatome verbrücken [2]. Wir fanden wenige Jahre später, dass ähnlich gebaute Zweikernkomplexe $(Cp)(2-MeC_3H_4)Pd_2L_2$ $(L = PPh_3, P(OMe)_3, P(OPh)_3)$, die eine Methylallyl- und eine Cyclopentadienyl-Brücke enthalten, in nahezu quantitativer Ausbeute bei der Umsetzung von $CpPd(2-MeC_3H_4)$ mit L im Molverhältnis 1 : 1 entstehen [3]. An Stelle von $2-MeC_3H_4$ können auch andere Allylgruppen [4] und — wie Felkin et al. [5] zeigten — ebenso Halogene als Brückenliganden dienen.

In der vorliegenden Arbeit berichten wir zusammenfassend über die Synthese und Eigenschaften der von uns besonders eingehend untersuchten Palladiumverbindungen (Cp)(2-RC₃H₄)Pd₂L₂, über die Darstellung der analogen Platinkomplexe (Cp)(2-RC₃H₄)Pt₂L₂ und über Versuche, entsprechende Nickelverbindungen zu erhalten.

Syntheseweg A

Die Reaktion nach Gl. 1 lässt sich mit tert. Phosphinen, Phosphiten und Arsinen als Liganden L durchführen. Über die Isolierung und Charakterisierung der Komplexe mit L = PMe₂Ph, PMePh₂, PPh₃, P(i-Pr)₃, P(n-Bu)₃, P(OMe)₃ und P(O-o-Tol)₃ haben wir bereits früher berichtet, ebenso über die Ergebnisse der Kristallstrukturuntersuchungen von Vd und Vn [4a].

Als Lösungsmittel für den Syntheseweg A hat sich Benzol oder Toluol bewährt. In den meisten Fällen ist die Reaktionsgeschwindigkeit bei Raumtemperatur schon so gross, dass nach wenigen Minuten ein vollständiger Umsatz

^{*} Verwendete Abkürzungen: Cp = C_5H_5 , Me = CH₃, Pr = C_3H_7 , Bu = C_4H_9 , Cy = C_6H_{11} , Ph =

 $C_6H_5, Tol = C_6H_4CH_3.$

erreicht ist. Nur mit sterisch anspruchsvollen Liganden wie $P(i-Pr)_3$ oder PCy_3 ist teilweise ein Erwärmen der Reaktionslösung auf 60—90°C notwendig, um eine möglichst quantitative Ausbeute an Zweikernkomplex zu erzielen. Auf den Einfluss sterischer Faktoren weist auch die Abstufung der Reaktivität der Ausgangsverbindungen CpPd(2-RC₃H₄) hin: Während I mit P(i-Pr)₃ bei Raumtemperatur innerhalb weniger Sekunden reagiert, wird für die Reaktion von II mit P(i-Pr)₃ bei 25°C eine Reaktionszeit von ca. 1 Stunde und für diejenige von III eine Reaktionstemperatur von 90°C benötigt.

Noch deutlicher sind die Unterschiede für $L = PCy_3$. In diesem Fall erfordert bereits die Umsetzung von II ein Erwärmen auf 90°C, während ausgehend von III auch nach mehrstündigem Belassen bei dieser Temperatur kein Zweikernkomplex entsteht. Man beobachtet lediglich Zersetzung unter Metallabscheidung. Die sterischen Gegebenheiten dürften ebenfalls die Ursache dafür sein, dass in Lösungen der t-Butylallyl-Komplexe VI teilweise eine Dissoziation nach Gl. 2 stattfindet, was durch ¹H-NMR-Messungen leicht nachweisbar ist.

Mit L = $P(t-Bu)_3$ liess sich bei den Reaktionen von I, II und III kein Zweikern-

komplex erhalten. Sowohl bei einem Molverhältnis CpPd(2-RC₃H₄)/P(t-Bu)₃ = 1/2 als auch bei einem Überschuss an Phosphin entsteht quantitativ die sehr stabile Verbindung Pd[P(t-Bu)₃]₂, die bereits von Otsuka et al. beschrieben wurde [6]. Bei Wahl äquimolarer Mengen an CpPd(2-RC₃H₄) und P(t-Bu)₃ setzt sich nur die Hälfte des Palladiumkomplexes zu Pd[P(t-Bu)₃]₂ um. Mit L = P(t-Bu)₂Ph, C₂H₄(PPh₂)₂ und C₂H₄(PMe₂)₂ werden ebenfalls Produkte der Zusammensetzung PdL₂ isoliert, die auch auf anderem Wege zugänglich sind [6,7].

Die Synthese von (Ni-Ni)-Komplexen $(Cp)(2-RC_3H_4)Ni_2L_2$ analog zu Gl. 1 ist uns bisher nicht gelungen. CpNiC₃H₅ und CpNi(2-MeC₃H₄) sind gegenüber Phosphinen und Phosphiten wesentlich inerter als die entsprechenden Palladiumkomplexe [8]. So reagiert CpNiC₃H₅ z.B. mit P(OPh)₃ erst oberhalb 50°C in nachweisbarem Ausmass, während sich CpPdC₃H₅ mit P(OPh)₃ bei Raumtemperatur praktisch momentan umsetzt. Aus CpNi(2-MeC₃H₄) und P(OMe)₃ entstehen bei 25°C nach Gl. 3 ausschliesslich Ni[P(OMe)₃]₄ und Cp(2-MeC₃H₄); bei Wahl eines Molverhältnisses CpNi(2-MeC₃H₄)/P(OMe)₃ = 1/4 ist der Umsatz quantitativ. Trotz intensiver Bemühungen ist es uns nicht gelungen, die Bildung von Zwischenverbindungen wie z.B. CpNi(2-MeC₃H₄)L bei dieser Reaktion nachzuweisen.

$$C_{PNi}(2-MeC_{3}H_{4}) + 4 P(OMe)_{3} - Ni [P(OMe)_{3}]_{4} + C_{3}H_{4}R$$
 (3)

Vorwiegend enttäuschend verliefen auch unsere Versuche zur Darstellung von (Pt-Pt)-Zweikernkomplexen. CpPt(2-MeC₃H₄), das hinsichtlich seiner Reaktivität eine Zwischenstellung zwischen CpNi(2-MeC₃H₄) und CpPd(2-MeC₃H₄) einnimmt, reagiert zwar mit P(OMe)₃ bereits bei Raumtemperatur und mit P(OPh)₃ bei 60°C, es entsteht jedoch bei diesen Reaktionen weder ein Produkt der Zusammensetzung (Cp)(2-MeC₃H₄)Pt₂L₂ noch ein Allylcyclopentadien. Eine eindeutige Reaktion, die in guten Ausbeuten zur Bildung des Zweikernkomplexes VIII führt, erfolgt mit Trimethylphosphin (Gl. 4). Man isoliert farblose Kristalle, die in ihren Eigenschaften der entsprechenden (*Pd-Pd*)-Verbindungen Va sehr ähnlich sind.

$$2 C_{p}Pt(2-MeC_{3}H_{4}) + 2 PMe_{3} \longrightarrow Me_{3}P \longrightarrow Pt \longrightarrow PMe_{3}$$
(4)
(VII)

Mit PPh₃ reagiert VII bei Raumtemperatur nicht. Bei 60°C tritt eine Spaltung der Cp—Pt- und der Allyl—Pt-Bindung ein; es bildet sich wahrscheinlich eine Verbindung Pt(PPh₃)_n, die in Abwesenheit einer genügenden Phosphinmenge allerdings wenig stabil ist und sich unter Metallabscheidung zersetzt. Intermediär beobachtet man im ¹H-NMR-Spektrum ein Triplett schwacher Intensität bei δ 5.7 ppm mit J(PH) 2 und J(PtH) 26 Hz, das einem zu VIII analogen Zweikernkomplex zugeordnet werden kann. Bei den Umsetzungen von VII mit $P(i-Pr)_3$ und PCy_3 entstehen sehr rasch die einkernigen Verbindungen $CpPt(2-MeC_3H_4)PR_3$ [9]. Diese lassen sich zwar beim Erwärmen in die Zweikernkomplexe $(Cp)(2-MeC_3H_4)Pt_2(PR_3)_2$ überführen, doch ist diese Umwandlung von erheblicher Zersetzung begleitet und daher kein geeigneter Syntheseweg zu den gewünschten Produkten.

Syntheseweg B

Die Alternative zum Syntheseweg A ergab sich aus den früher von uns [10] durchgeführten Untersuchungen zum Mechanismus der Reaktion von CpPd- $(2-RC_3H_4)$ und L. Diese hatten gezeigt, dass im Primärschritt aus je einem Molekül der Ausgangsverbindungen ein 1/1-Addukt CpPd $(2-RC_3H_4)$ L entsteht, welches dann mit einem zweiten Molekül L — in einigen Fällen über ein 1/2-Addukt als weitere Zwischenstufe — zu PdL₂ und dem Allylcyclopentadien reagiert. Bei Gegenwart eines Überschusses an L erhält man aus PdL₂ entweder PdL₃ oder PdL₄. Wählt man für die Umsetzung von CpPd $(2-RC_3H_4)$ mit L jedoch äquimolare Mengen der Reaktionspartner, so sollte nach Bildung von PdL₂ und dem Allylcyclopentadien noch die Hälfte der Ausgangsverbindung CpPd $(2-RC_3H_4)$ vorhanden sein und durch Reaktion von dieser mit PdL₂ der Zweikernkomplex entstehen. Auf die Möglichkeit einer solchen "1 + 1"-Addition deutet auch das in Gl. 2 angegebene Gleichgewicht hin.

Die Bestätigung unserer Überlegungen erbrachte zuerst die Synthese der Komplexe (Cp)(2-RC₃H₄)Pd₂L₂ nach Gl. 5. Als Ausgangsverbindungen PdL₂ wurden dabei Pd[P(i-Pr)₃]₂ und Pd(PCy₃)₂ gewählt, die aus [(2-MeC₃H₄)PdCl]₂ oder CpPd(2-RC₃H₄) und L in guten Ausbeuten zugänglich [6,11] und im Gegensatz zu Pd[P(t-Bu)₃]₂ auch genügend reaktiv sind. Bei Zugabe einer stöchiometrischen Menge Pd[P(i-Pr)₃]₂ oder Pd(PCy₃)₂ zu einer benzolischen Lösung von I, II oder III beobachtet man sofort eine Farbaufhellung von Tiefrot nach Gelborange und in einem unmittelbar danach aufgenommenen ¹H-NMR-Spektrum ausschliesslich die Signale des entsprechenden Zweikernkomplexes.

Bisher liess sich nicht entscheiden, ob die Bildung von $(Cp)(2-RC_3H_4)Pd_2L_2$ nach Gl. 5 über irgendwelche Zwischenstufen (z.B. der Zusammensetzung CpPd(2-RC_3H_4)L) verläuft. Da die Verbindung CpPd(2-MeC_3H_4)P(i-Pr)_3 in Lösung stabil ist und ihre NMR-Daten bekannt sind [1], können wir ihre intermediäre Bildung bei der Synthese von $(Cp)(2-MeC_3H_4)Pd_2[P(i-Pr)_3]_2$ nach Gl. 5 ausschliessen. Damit scheidet auch das Auftreten von freiem Phosphin aus. Wir müssen danach annehmen, dass nach dem Angriff des Nucleophils PdL₂ auf den Komplex CpPd(2-RC_3H_4) eine rasche intramolekulare Umorientierung der Ligandensphäre erfolgt, ohne dass eine weitere Zwischenverbindung gebildet wird.

Die in Gl. 5 angegebene, formal sehr einfache "1 + 1"-Addition sollte im Prinzip auch für die Synthese entsprechender Zweikernkomplexe mit Ni-Ni-, Pt-Pt- oder heterometallischer M-M'-Bindung anwendbar sein. NiL₂-Verbindungen sind unseres Wissens nicht bekannt. Wir haben daher als Quelle für ein NiL₂-Fragment den in fester Form relativ stabilen Komplex [(PCy₃)₂Ni]₂(N₂) [12,13] eingesetzt, der jedoch weder bei Raumtemperatur noch beim Erwärmen in Toluol mit CpNi(2-MeC₃H₄) zu (Cp)(2-MeC₃H₄)Ni₂(PCy₃)₂ reagierte. Das Aussehen der NMR-Spektren deutete auf die Bildung paramagnetischer Produkte hin, die nicht näher identifiziert wurden. Im Gegensatz dazu führen die Reaktionen von CpPtC₃H₅ und CpPt(2-MeC₃H₄) mit Pt[P(i-Pr)₃]₂ in relativ guten Ausbeuten zu den Zweikernkomplexen (Cp)(2-RC₃H₄)Pr₂[P(i-Pr)₃]₂ (IX, X), die als farblose, nur mässig luftempfindliche Feststoffe isoliert werden.

$$C_{P}Pt(2-RC_{3}H_{4}) + Pt\left[P(i-Pr)_{3}\right]_{2} - (i-Pr)_{3}P - Pt - P(i-Pr)_{3} \quad (6)$$

$$(IX), R = H; (X), R = Me$$

Auch hierbei lassen sich, trotz längerer Reaktionszeit, keine Zwischenstufen NMR-spektroskopisch beobachten. Freies $P(i-Pr)_3$ entsteht mit hoher Wahrscheinlichkeit nicht, da sonst die stabilen Verbindungen $CpPt(2-RC_3H_4)P(i-Pr)_3$ [9] gebildet werden sollten. Analog wie IX und X sind auch die Komplexe (Cp)- $(2-RC_3H_4)PdPtL_2$ ausgehend von $CpPt(2-RC_3H_4)$ und PdL_2 (R = H, Me; L = $P(i-Pr)_3$, PCy_3) zugänglich. Wir haben ihre Synthese und Eigenschaften bereits an anderer Stelle beschrieben [14].

Zu den Möglichkeiten, Zweikernkomplexe der allgemeinen Zusammensetzung (Cp)(2-RC₃H₄)MM'L₂ aus CpM(2-RC₃H₄) und M'L₂ darzustellen, kann zusammenfassend Folgendes gesagt werden:

(1) Die Reaktivität der Allyl-cyclopentadienyl-Metallkomplexe gegenüber den Verbindungen M'L₂ nimmt gemäss $Pd \ge Pt \gg Ni$ ab. Damit werden frühere Befunde bestätigt, die an Hand kinetischer Daten den wesentlich inerteren Charakter von CpNiC₃H₅ im Vergleich zu CpPdC₃H₅ belegen [8].

(2) In der Reihe der M'L₂-Komplexe zeichnet sich ein umgekehrter Gang, d.h. eine Abstufung der Reaktivität gemäss Ni > Pd > Pt, ab. $[(PCy_3)_2Ni]_2(N_2)$ (als Quelle für Ni(PCy₃)₂) reagiert mit CpPd(2-MeC₃H₄) momentan unter Bildung von CpNi(2-MeC₃H₄), d.h. es findet hier eine sehr rasche und vollständige Übertragung der π -gebundenen Liganden vom Palladium auf das Nickel statt. Bei der entsprechenden Reaktion von Pd(PCy₃)₂ erfolgt demgegenüber nur eine quasi "partielle" Verdrängung der organischen Gruppen und es bilden sich die Zweikernkomplexe (Cp)(2-RC₃H₄)MPdL₂ (M = Pd, Pt), in denen die μ -Cpund μ -Allyl-Liganden beiden Metallatomen zugehören. Pt(PCy₃)₂ reagiert nur sehr langsam mit CpPd(2-RC $_{3}H_{4}$) und CpPt(2-RC $_{3}H_{4}$) und erweist sich damit als inertester Vertreter der Bis(tricyclohexylphosphin)-Komplexe.

Reaktionen von CpPd(2-ClC₃H₄)

Der zu I, II und III strukturanaloge 2-Chlorallyl-Komplex CpPd(2-ClC₃H₄) reagiert mit PPh₃ und tert. Phosphiten zu den entsprechenden *monohapto*-Allyl-Verbindungen CpPd(2-ClC₃H₄)L, die kinetisch stabil bezüglich einer Weiterreaktion mit einem zweiten Molekül L sind und daher bei der Umsetzung von stöchiometrischen Mengen CpPd(2-ClC₃H₄) und L auch keine Zweikernkomplexe (Cp)(2-ClC₃H₄)Pd₂L₂ bilden [15]. In Lösung spalten die Verbindungen CpPd(2-ClC₃H₄)L sehr leicht Allen ab und es entstehen die Komplexe CpPd-(L)Cl.

Ganz ähnlich verhalten sich auch P(i-Pr)₃, PCy₃ und AsPh₃ gegenüber CpPd-(2-ClC₃H₄). Bei Zugabe eines dieser Liganden zu einer benzolischen Lösung des Palladiumkomplexes beobachtet man im ¹H-NMR-Spektrum zunächst die Signale von CpPd(2-ClC₃H₄)L (für L = P(i-Pr)₃: δ 5.67, d, J(PH) 2, C₅H₅; 5.17, s, H₁; 5.03, s, H₁; 2.42, d, J(PH) 4.5, H₂), die bei 25°C innerhalb einer Stunde wieder verschwinden und durch die Signale von CpPd(L)Cl ersetzt werden (für L = P(i-Pr)₃: δ 5.57, d, J(PH) 4.5, C₅H₅). Die Allenbildung wird durch das scharfe Singulett bei δ 4.53 ppm belegt.

Weniger Schwierigkeiten bei der Darstellung von $(Cp)(2-ClC_3H_4)Pd_2L_2$ waren gemäss dem Alternativweg B zu erwarten. Tatsächlich reagiert $Pd[P(i-Pr)_3]_2$ mit $CpPd(2-ClC_3H_4)$ in Benzol sehr rasch, doch resultiert dabei — wie ein sofort aufgenommenes NMR-Spektrum zeigte — kein einheitliches Produkt. Neben Allen lässt sich als Hauptbestandteil des Reaktionsgemisches der Zweikernkomplex $(Cp)(Cl)Pd_2[P(i-Pr)_3]_2$ identifizieren, der bereits früher von Felkin und Turner [5c] aus CpPd[P(i-Pr)_3]Cl und Mg synthetisiert wurde.

Beim Stehenlassen der benzolischen, C_3H_4 -haltigen Lösung von XI erhält man zunächst den unsymmetrischen (Pd-Pd)-Zweikernkomplex XII, der (etwas verunreinigt mit XI) als oranger Feststoff isoliert werden kann. Beim Erwärmen von XII in Benzol auf 60°C stellt man nach ca. 30 Minuten eine vollständige Isomerisierung zu XIII fest.

Das ¹H-NMR-Spektrum von XII weist insbesondere auf das Vorhandensein einer unsymmetrischen π -gebundenen Allylgruppe hin [16]. Ferner ist zu erkennen, dass sowohl die Cyclopentadienylprotonen als auch die Allylprotonen nur mit einem Phosphoratom koppeln. Durch selektive PH-Entkopplung lässt sich zeigen, dass für die Phosphorkopplung zu den Cp-Protonen und den Allylprotonen zwei verschiedene ³¹P-Kerne verantwortlich sind. Entsprechend findet man im ³¹P-NMR-Spektrum von XII zwei Signale gleicher Intensität, die nicht durch PP-Kopplung aufgespalten sind.

Das ¹H-NMR-Spektrum von XIII belegt nicht nur das Vorhandensein einer symmetrischen, verbrückenden Allylgruppe sowie eines substituierten Cyclopentadiens sondern vor allem die Äquivalenz der beiden Phosphinliganden. Mit dieser Aussage stimmt auch das ³¹P-NMR-Spektrum überein, in dem nur ein Signal zu erkennen ist.

Zur Absicherung des ersten Reaktionsschrittes von Gl. 9 haben wir XI direkt mit Allen umgesetzt und dabei XII erhalten. Da nicht mit äquimolaren Mengen sondern mit einem C_3H_4 -Überschuss gearbeitet wurde, enstand neben XII noch CpPd(2-ClC₃H₄)P(i-Pr₃). Auf eine Trennung dieser beiden Verbindungen wurde verzichtet.

Über den wahrscheinlichen Bildungsmechanismus von XI gemäss Gl. 8 gibt die Umsetzung der Ausgangsverbindungen in Pentan Auskunft. Man beobachtet hier, abweichend vom Reaktionsverlauf in Benzol, nach einigen Minuten einen gelben Niederschlag, der sich bei längerem Rühren, schneller beim Erwärmen auf 60°C, wieder auflöst. Aus dieser Lösung kann XI, teilweise verunreinigt durch Folgeprodukte, isoliert werden. Der zuerst gebildete gelbe Niederschlag ist auch in fester Form wenig stabil und geht bereits beim Abfiltrieren und Trocknen im Hochvakuum in die rote Verbindung XI über. Die Vermutung liegt nahe, dass das gelbe Primärprodukt der gesuchte Zweikernkomplex (Cp)(2-ClC₃H₄)Pd₂[P(i-Pr)₃]₂ ist, der sehr rasch Allen abspaltet und dabei zu XI reagiert. Orientierende Versuche lassen erkennen, dass die Reaktion von CpPd(2-ClC₃H₄) mit Pd(PCy₃)₂ ganz ähnlich verläuft [17].

Von den Isomeren XII und XIII ist letzteres offenbar die thermodynamisch

stabilere Verbindung. Sie könnte, wie in Gl. 9 angegeben, aus XII oder aber, falls XII mit XI und Allen im Gleichgewicht steht, auch direkt aus XI und C_3H_4 entstehen. Eine Entscheidung hierüber lassen die bis jetzt vorliegenden Ergebnisse noch nicht zu.

NMR-Spektren

Die ¹H-NMR-Spektren einiger (Pd-Pd)-Zweikernkomplexe wurden bereits früher diskutiert [4a]. Es wurde dabei vor allem auf das Problem der Bindigkeit (*tri*- oder *pentahapto*) der Cyclopentadienyl-Liganden hingewiesen. Die entsprechenden Angaben für die vorher noch nicht beschriebenen Vertreter des Typs (Cp)(2-RC₃H₄)Pd₂L₂ sind in Tabelle 1 zusammengefasst.

Da die Struktur (im Kristall) bisher nur für die Verbindungen (Cp)(2-MeC₃H₄)-Pd₂(PPh₃)₂ (Vd) und (Cp)(2-MeC₃H₄)Pd₂[P(O-o-Tol)₃]₂ (Vn) bekannt ist [4a], haben wir uns sehr darum bemüht, auf der Basis der NMR-Daten auch eine konkrete Aussage zur Konstitution der analogen (Pd—Pt)- und (Pt—Pt)-Komplexe (in Lösung) zu erhalten. Eine wichtige Informationsquelle hierfür bieten die Satellitensignale in den ¹H-, ¹³C- und ³¹P-NMR-Spektren, in denen die Kopplungen der betreffenden Kerne mit dem Kern des Isotops ¹⁹⁵Pt im allgemeinen gut zu beobachten sind. Nach den vorliegenden Ergebnissen zu schliessen, ist der Cyclopentadienyl-Ligand in allen untersuchten Zweikernkomplexen der Zusammensetzung (Cp)(2-RC₃H₄)MM'L₂ (für M = Pd, M' = Pt siehe [14]) gleichartig gebunden. In Fig. 1 ist ein Strichmuster für das jeweilige Cp-Signal in den ¹H- und ¹³C-NMR-Spektren angegeben, das das unterschiedliche Aussehen dieses Signals für M = M' = Pd, M = Pd, M' = Pt und M = M' = Pt verdeutlicht. Die ¹H-NMR-Daten der Pt₂-Zweikernkomplexe sind in Tabelle 1 mit aufgeführt.

Eine Aussage darüber, ob auch die Allyl-Liganden stets gleichartig gebunden sind, lässt sich nur mit Vorbehalt machen, da die betreffenden NMR-Signale in den Platin-haltigen Komplexen eine starke Intensitätsschwächung durch die Kopplung mit ¹⁹⁵Pt erfahren. Ein sehr gut interpretierbares ¹H-NMR-Spektrum wurde von dem Komplex (Cp)(2-MeC₃H₄)Pt₂(PMe₃)₂ (VIII) erhalten, da hier das Signal der PMe₃-Protonen keine Signale der Allylprotonen verdeckt. Die Daten lassen den Schluss zu, dass in VIII wie in den Komplexen des Typs IV, V und VI eine symmetrische Allylbrücke vorliegt, die die beiden Platinatome verknüpft.

Auf die schon erwähnte Möglichkeit, dass der Cyclopentadienylring in den Verbindungen (Cp)(2-RC₃H₄)M₂L₂ allylartig (d.h. als *trihapto*-C₅H₅) gebunden ist [4a], weist noch der folgende Befund hin. Die ¹³C—¹⁹⁵Pt-Kopplungskonstante für das Signal der Cp-Kohlenstoffatome in VIII ist 25.7 Hz; ein sehr ähnlicher Wert wird für die heterometallischen Zweikernkomplexe mit Pd—Pt-Bindung gefunden [14]. Der entsprechende Wert für einen — allerdings einkernigen *pentahapto*-Cp-Komplex, CpPt[P(OMe)₃]Me, ist 3.8 Hz und für einen *monohapto*-Cp-Komplex, CpPt(C₈H₁₂)Me, 93.2 Hz [18]. Der Wert für VIII liegt also gerade dazwischen. Es bleibt abzuwarten, ob der Gang, der sich hier abzeichnet, mit einer unterschiedlichen Bindigkeit des Fünfrings tatsächlich in Beziehung gesetzt werden kann.

Die erhaltenen ¹³C-NMR-Daten sind in Tabelle 2, die ³¹P-NMR-Daten in Tabelle 3 wiedergegeben. Die Breitband-entkoppelten ³¹P-NMR-Spektren der

TABELLE 1

٩.

¹H-NMR-SPEKTREN DER KOMPLEXE (C₅H₅)(2-RC₃H₄)M₂L₂, IN C₆D₆ (5 in ppm, J in Hz; Multiplizitäten in Klammern)

ŕ

í Ŧ

È

•

Komplex $\delta(C_5H_5)$ $J(PH)$ IVe $6.13(1)$ 1.6 IVO $6.58(s)$ IVD $6.07(s)$ Va $5.92(1)$ 2.3	6(II.)				-	
IVe 6.13 (1) 1.6 IVo 6.58 (9) IVp 6.07 (5) Va 5.92 (1) 2.3 Va 5.92 (1) 2.3		J(PH)	6(H ₂)	6(R)	(HA)r	
IVo 6.58 (s) IVp 6.07 (s) Va 5.92 (t) 2.3 Va 5.92 (t) 2.3	a .		0	a	na pinangan mananangan pinangan na mangan na mangan na minangan na	
IVp 6.07 (s) Va 5.92 (t) 2.3 Va 5.92 (t) 2.3	a		a	a		
Va 5.92 (l) 2.3	2.36 (d) b		9.90 (d) ^b	ø		
XIA 6.70 (1) 1.6	3.10 (t)	6,0		1.63 (1)	4.5	
	a		а	8	1	
Vh 5.86 (t) 1.4	2.80 (t)	5.5	a	1,50 (t)	1,3	
Vi 5.96 (t) 1.5	3,05 (t)	5,5	2,10 (bs)	1.47 (t)	3.0	
V)· 6.13 (t) 1.5	ø		a	a	-	
VI 6.03 (t) 2.0	3,35 (t)	7.6	1,88 (bs)	1.57 (s)		
Vo 6,50 (s)	3.33 (s)		1,58 (s)	1.77 (s)		
Vp 6.02 (s)	2.75 (s)		1,03 (bs)	1.42 (s)		
VIg 5.68 (t) 1.5	đ		a	a		
Vlh 5.83 (t) 1.3	2,60 (t)	5,0	0	(s) (0) (s)		
VIJ 5.93 (t) 1.4	Ø		a	1.08 (s)		
VIo 6.43 (s)	3.40 (s)		a	a		
VIII 5.59 (t) 2.4 ^c	2.97 (t)	5.0 d	1,58 (bs)	2.24 (t)	4,4	
IX 5.63 (t) 1.9 ^e	a		e e	5		-
X 5.58 (t) 1.8 ^f	ø		a	1.94 (t)	3.7	

•

I

:

Fig. 1. Signal form des Cp-Signals in den ¹H- und ¹³C-NMR-Spektren der Komplexe (Cp)(2-RC₃H₄)MM'L₂ (L = PR_3).

TABELLE 2

¹³C-NMR-SPEKTREN DER KOMPLEXE $(C_5H_5)(2-RC_3H_4)M_2L_2$, IN C_6D_6 (δ in ppm, J in Hz; Multiplizitäten in Klammern)

.

Komplex	δ(C ₅ H ₅)	J(CH)	J(CPt)	δ(C1)	δ(C ₂)	δ(R)
Ve	89.3 (s)	161		33.0 (t) ^a	94.6 (t) ^b	16.6 ^c
Vn	89.6 (s)	165		31.9 °	106.6 °	24.8 °
VIII	84.6 (s)		25.7	đ	đ	\tilde{d}
х	84.9 (s)	160	27.9	d	d	d

 a J(CP) 3.0 Hz; b J(CP) 4.0 Hz. c Feinstruktur des Signals ist nicht aufgelöst. d Signal liegt unterhalb der Nachweisgrenze.

SIP-NMR-SP	¹ P-NMR-SPEKTREN DER KOMPLEXE (C_5H_5)(2-R C_3H_4) M_2L_2 , in C_6D_6 (δ in ppm, J in Hz)					
Komplex	δ	³ J(PP)	¹ J(PPt)	² J(PPt)		
 Ve	38.2 (s)					
VIII	47.6 (s)	84	+4622	139		
x	18.6 (s)	. 73	+4716	86		

(Pd-Pd)-Zweikernkomplexe zeigen jeweils ein Singulett für die Phosphorkerne der beiden gleichartig angeordneten Liganden. Dies gilt auch für die analogen (Pt-Pt)-Verbindungen (Cp) $(2-RC_3H_4)Pt_2L_2$. Für den Fall, dass in diesen Molekülen ein ¹⁹⁵Pt-Kern vorhanden ist, resultiert ein Satellitenspektrum vom Typ AA'X, dessen AA'-Teil im ³¹P-NMR-Spektrum von VIII gut sichtbar ist. Man beobachtet 8 Linien, die im Gegensatz zum Spektrum von (Cp)(2-MeC₃H₄)-PdPt[P(i-Pr)3]2 zentrosymmetrisch zum Hauptpeak angeordnet sind. Daraus lassen sich neben der Kopplungskonstante ${}^{3}J(PP)$ auch die Werte für ${}^{1}J(PtP)$ und ²J(PtP) bestimmen. Sie entsprechen in ihrer Grössenordnung den für (Cp)(2- $MeC_{H_{4}}PdPt[P(i-Pr)_{1}]_{2}$ gefundenen Werten.

Für den wesentlich weniger wahrscheinlichen Fall, dass in einem Molekül von (Cp)(2-MeC₃H₄)Pt₂(PMe₃)₂ zwei ¹⁹⁵Pt-Kerne vorhanden sind, ist ein intensitätsschwaches Satellitenspektrum vom Typ AA'XX' zu erwarten, dessen AA'-Teil neben den schon erwähnten Satelliten auftreten sollte. Der AA'-Teil eines solchen Spinsystems besteht aus 10 Linien, die im Spektrum von VIII auch tatsächlich zu finden sind. Im Spektrum von X sind dagegen nur die zwei stärksten

Fig. 2. Vergleich der ³¹P-NMR-Spektren der Komplexe (Cp)(2-RC₃H₄)MM[']L₂ (L = PR₃).

TABELLE 3

Linien zu beobachten. Durch eine Computersimulation des Satellitenmusters von VIII mit Hilfe des Fortran-Programms LAO III konnte gezeigt werden, dass die gefundenen sehr schwachen Signale wie erwartet einem Spinsystem AA'XX' zuzuordnen sind und dass die Kopplungskonstante ${}^{1}J(PtPt)$ ca. 218 Hz beträgt. Für den Komplex X wurde kürzlich ein Wert ${}^{1}J(PtPt)$ von 188 Hz ermittelt [19]. In Fig. 2 sind schematisch die ${}^{31}P$ -NMR-Spektren der Zweikernkomplexe (Cp)(2-MeC₃H₄)MM'L₂ für M = M' = Pd, M = Pd, M' = Pt und M = M' = Pt gegenübergestellt.

Reaktionen

Die Reaktionen der Zweikernkomplexe sowohl mit nucleophilen als auch mit elektrophilen Agenzien verlaufen vorwiegend unter Spaltung der Metall-Metall-Bindung. Dass diese, vor allem für M = Pd, recht labil ist, zeigt bereits die Dissoziation in die beiden Bruchstücke CpPd(2-RC₃H₄) und PdL₂, wie sie in Gl. 2 angegeben ist.

Das intermediäre Auftreten von CpPd(2-RC₃H₄) lässt sich auch bei den Umsetzungen von (Cp)(2-RC₃H₄)Pd₂L₂ mit Jod, Halogenwasserstoffen und Methyliodid nachweisen [4a]. Hierbei entsteht neben CpPd(2-RC₃H₄) zuerst wahrscheinlich ein Palladium(II)-Komplex L₂Pd(X)Y, der mit CpPd(2-RC₃H₄) in einer Art Konproportionierung zu den in Schema 1 angeführten Verbindungen reagiert. Da diese auf anderem Wege wesentlich einfacher zugänglich sind, wurden bei den durchgeführten Versuchen im allgemeinen auf eine Trennung des Produktgemisches verzichtet, die entstandenen Komplexe wurden lediglich NMR-spektroskopisch identifiziert. Hervorzuheben ist der Befund, dass bei den Reaktionen von (Cp)(2-RC₃H₄)Pd₂L₂ (R = Me, L = PMe₃, PPh₃, P(O-o-Tol)₃; R = t-Bu, L =

SCHEMA 1

 $P(O-o-Tol)_3$) mit Methyliodid stets CpPd(L)Me und $(2-RC_3H_4)Pd(L)I$, nicht jedoch CpPd(L)I und $(2-RC_3H_4)Pd(L)Me$ entstehen. Die Bildung der genannten Produkte wurde hier, am Beispiel der Umsetzung von CpPd($2-MeC_3H_4$) und $(PMe_3)_2Pd(Me)I$, wie auch in den anderen Fällen durch ein Kontrollexperiment bestätigt.

Uberraschenderweise ist bei den Reaktionen von $(Cp)(2-MeC_3H_4)Pd_2L_2$ mit HBr in Benzol kein CpPd(2-MeC_3H_4) als Zwischenverbindung zu beobachten. Für L = PMe_3 lassen sich die nach vollständigem Umsatz auftretenden NMR-Signale den Komplexen $(Cp)(Br)Pd_2L_2$ und $(2-MeC_3H_4)Pd(L)Br$, für L = $P(O-o-Tol)_3$ den Verbindungen $(Cp)(Br)Pd_2L_2$ und $(2-MeC_3H_4)(Br)Pd_2L_2$ zuordnen. Es wäre denkbar, dass zunächst, ähnlich wie bei den Reaktionen von $(Cp)(2-MeC_3H_4)Pd_2L_2$ mit HCl, die einkernigen Verbindungen CpPd(L)Br und $(2-MeC_3H_4)Pd(L)Br$ entstehen, die mit L (siehe hierzu die eingangs erwähnte Arbeit von Kabayashi et al. [2]) zu den Zweikernkomplexen reagieren. Nach den vorliegenden Ergebnissen scheint es vor allem von den Liganden L, X und $2-RC_3H_4$ abhängig zu sein, ob ausschliesslich einkernige oder auch zweikernige Produkte gebildet werden.

Einen Austausch der Liganden L in den Komplexen (Cp)(2-RC₃H₄)Pd₂L₂ gegen eine andere Lewis-Base unter Aufrechterhaltung der Metall--Metall-Bindung haben wir nur bei der Umsetzung von (Cp)(2-MeC₃H₄)Pd₂[P(i-Pr)₃]₂ mit PMe₃ beobachtet. Hierbei treten intermediär die NMR-Signale des entsprechenden Bis(trimethylphosphin)-Komplexes Va auf, die allerdings bald wieder verschwinden und den Signalen des Methylallylcyclopentadiens Cp(2-MeC₃H₄) Platz machen. Daneben dürften ein oder auch mehrere Palladium(0)-phosphin-Komplexe entstehen. Bei Zugabe sehr kleiner Mengen PMe₃ zu (Cp)(2-MeC₃H₄)-Pd₂(PMe₃)₂ (Va) verschwinden momentan die im Spektrum des Zweikernkomplexes auftretenden PH-Kopplungen, ohne dass sich die Lage der einzelnen Signale ändert, was ebenfalls für einen raschen Phosphinaustausch spricht.

Experimentelles

Alle Arbeiten wurden unter Stickstoff und in N₂-gesättigten, sorgfältig getrockneten Lösungsmitteln durchgeführt. Von den verwendeten Ausgangsverbindungen wurden PMe₃ [20], P(t-Bu)₃, P(t-Bu)₂Ph, P(t-Bu)Ph₂, PCy₂Ph [21], As(i-Pr)₃ [22], As(CH₂Ph)₃ [23], Pd[P(i-Pr)₃]₂, Pd(PCy₃)₂, Pt[P(i-Pr)₃]₂ [6,11] und CpPd(2-RC₃H₄) (R = H, Me, t-Bu, Cl) [10,24] nach Literaturangaben hergestellt. Die Synthese von CpPt(2-RC₃H₄) (R = H, Me) wurde gegenüber den ursprünglichen Angaben [25] modifiziert (nach unseren Erfahrungen erhält man bei der Reaktion von PtCl₂ mit einem Gemisch von (2-RC₃H₄)MgCl und CpNa bzw. CpTl nicht den gewünschten Komplex CpPt(2-RC₃H₄) sondern Pt(2-RC₃H₄)₂ als Hauptprodukt). Zunächst wurden nach Literatur [C₃H₅PtCl]_x [26] und [(2-MeC₃H₄)PtCl]₂ [27] hergestellt und diese — ganz analog wie für die Synthese der Palladiumkomplexe CpPd(2-RC₃H₄) beschrieben [10,24] — mit CpNa oder CpTl umgesetzt. Die Ausbeuten betragen 50—70%.

Darstellung der Zweikernkomplexe $(Cp)(2-RC_3H_4)Pd_2L_2$ aus $CpPd(2-RC_3H_4)$ und L

Zu der Lösung von 1 mMol CpPd(2-RC₃H₄) in 20 ml Toluol gibt man 1 mMol

des entsprechenden Liganden L (falls dieser ein Feststoff ist, dann gelöst in 10 ml Toluol). Es wird 3-4 Std. bei Raumtemp. gerührt, wobei ein Farbwechsel von Tiefrot nach Oragne eintritt. Zur Darstellung von Vi, Vj, VIe, VIg, VIh und VIj muss bei 90°C gearbeitet werden. Nach Abziehen von etwa der Hälfte des Lösungsmittels am Vakuum und Zugabe von 15 ml Pentan wird das Reaktionsgemisch 24 Std. bei -30°C aufbewahrt. Es bilden sich orangegelbe Kristalle, die über eine G3-Fritte filtriert, mit Pentan mehrmals gewaschen und am Hochvakuum getrocknet werden. Falls beim Abkühlen ölige Produkte entstehen, empfiehlt es sich, das Solvens vollständig zu entfernen, den Rückstand sorgfältig am Hochvakuum zu trocknen und die Umkristallisation aus Toluol/Pentan noch einmal zu wiederholen. Ausbeute nach Umkristallisation: 70-85%.

Darstellung von $(Cp)(2-MeC_3H_4)Pt_2(PMe_3)_2$ (VIII)

Zu der Lösung von 395.3 mg (1.25 mMol) CpPt(2-MeC₃H₄) in 15 ml Benzol gibt man 119.1 μ f (1.25 mMol) PMe₃. Die zunächst hellgelbe und später dunkelbraune Lösung wird 2 Tage bei Raumtemp. gerührt. Danach wird das Solvens am Hochvakuum abgezogen und der ölige Rückstand mit 10 ml Pentan versetzt. Beim Stehenlassen scheiden sich aus der Lösung farblose, sehr feine Kristalle ab. Diese werden über eine G3-Fritte filtriert und solange mit Pentan gewaschen, bis das Filtrat farblos ist. Ausbeute 155 mg (38%).

Darstellung der Zweikernkomplexe $(Cp)(2-RC_3H_4)M_2L_2$ aus $CpM(2-RC_3H_4)$ und ML_2 (M = Pd, Pt)

Eine Lösung von 0.5 mMol ML_2 in 5 ml Toluol wird unter Rühren zu einer Lösung von $0.5 \text{ mMol CpM}(2\text{-}RC_3H_4)$ in 5 ml Toluol zugetropft. Für M = Pd wird dabei eine Farbaufhellung von Dunkelrot nach Hellorange beobachtet. Die Reaktionslösung wird im Fall M = Pd 30 Min., im Fall M = Pt 12 Std. gerührt. Dabei beginnen sich teilweise bereits Kristalle des Zweikernkomplexes abzuscheiden. Die Kristallisation wird durch Stehenlassen bei -30° C vervollständigt. Falls kein Feststoff ausfällt, wird die Lösung auf wenige ml eingeengt und mit Pentan versetzt (für L = P(i-Pr)₃ kann die Synthesereaktion auch direkt in Pentan durchgeführt werden). Die ausgefallenen Kristalle werden über eine G3-Fritte filtriert, mit Pentan mehrmals gewaschen und am Hochvakuum getrocknet. Ausbeute: 40-90%.

Eigenschaften der Zweikernkomplexe (Cp) $(2-RC_3H_4)M_2L_2$ (M = Pd, Pt)

Für M = Pd gelbe bis orange, für M = Pt farblose Feststoffe, die nur wenig luftempfindlich sind. Sie sind im allgemeinen gut löslich in Benzol und Toluol, wenig löslich in Pentan oder Hexan. In polaren Solvenzien tritt meist rasche Zersetzung ein. Die Komplexe mit L = PCy_3 sind auch in Benzol nur sehr wenig löslich und können daher nicht umkristallisiert werden. Die analytischen Daten sind in Tab. 4 zusammengefasst.

Massenspektren (Varian MAT CH 7; 70 eV)

Va: $m/e(I_r)$ 484 (60; M^+), 419 (8; (2-MeC₃H₄)Pd₂L₂⁺), 408 (8; (Cp)(2-MeC₃H₄)-Pd₂L⁺), 364 (25; Pd₂L₂⁺), 226 (44; CpPd(2-MeC₃H₄)⁺), 171 (16; CpPd⁺), 161 (100; 2-MeC₃H₄Pd⁺).

VIII: $m/e(I_r)$ 662 (50; M^+), 607 (4; (Cp)Pt₂L₂⁺), 597 (5; (2-MeC₃H₄)Pt₂L₂⁺), 542 (12; Pt₂L₂⁺), 466 (16; Pt₂L⁺), 391 (83; (Cp)(2-MeC₃H₄)PtL⁺), 347 (2; PtL₂⁺), 336 (5; CpPtL⁺), 326 (67; 2-MeC₃H₄PtL⁺), 315 (11; CpPt(2-MeC₃H₄)⁺), 271 (100; PtL⁺).

X: $m/e(I_r) 830(23; M^+)$, 775 (6; (Cp)Pt₂L₂⁺), 765 (3; (2-MeC₃H₄)Pt₂L₂⁺), 710 (5; Pt₂L₂⁺), 475 (21; (Cp)(2-MeC₃H₄)PtL⁺), 410 (35; 2-MeC₃H₄PtL⁺), 355 (100; PtL⁺).

Darstellung von $Cp[P(i-Pr)_3]Pd-Pd[P(i-Pr)_3](2-ClC_3H_4)$ (XII) und $(2-CpC_3H_4)-(Cl)Pd_2[P(i-Pr)_3]_2$ (XIII)

In einem NMR-Rohr werden 61.7 mg (0.25 mMol) CpPd(2-ClC₃H₄) in 0.5 ml C₆D₆ gelöst und mit einer Lösung von 106.7 mg (0.25 mMol) Pd[P(i-Pr)₃]₂ in 0.5 ml C₆D₆ versetzt. Ein sofort nach der Zugabe aufgenommenes NMR-Spektrum der dunkelroten Lösung zeigt die Signale von (Cp)(Cl)Pd₂[P(i-Pr)₃]₂ und Allen; ausserdem beobachtet man die Bildung sehr geringer Mengen von CpPd(2-ClC₃H₄)P(i-Pr)₃. Nach Stehenlassen der Lösung für ca. 2 Std. bei Raumtemp. sind die Signale von (Cp)(Cl)Pd₂[P(i-Pr)₃; praktisch verschwunden. Entfernt man jetzt das Solvens und behandelt den Rückstand mit Pentan, so erhält man nach Abkühlen auf --30°C orange Kristalle von XII, die, laut NMR-Spektrum, noch mit etwas (Cp)(Cl)Pd₂[P(i-Pr)₃]₂ verunreinigt sind. Ausbeute 120 mg (71%). (Gef.: C, 47.39; H, 7.89; Mol.-Gew. 674. C₃₆H₅₁ClP₂Pd₂ ber.: C, 46.34; H, 7.63; Mol.-Gew. 673.89.)

Lässt man die aus je 0.25 mMol CpPd(2-ClC₃H₄) und Pd[P(i-Pr)₃]₂ erhaltene Lösung nicht bei Raumtemp. stehen sondern erwärmt 30 Min. auf 60°C, so erhält man nach Abziehen des Solvens, Aufnahme des Rückstands in Pentan und Abkühlen auf -30°C gelbe Kristalle von XIII. Ausbeute 150 mg (89%). (Gef.: C, 46.11; H, 7.63; Mol.-Gew. 674. C₂₆H₅₁ClP₂Pd₂ ber.: C, 46.34; H, 7.63; Mol-Gew. 673.89.)

Reaktionen der Zweikernkomplexe (Cp)(2-RC₃H₄)Pd₂L₂ mit MeI, I_2 , HCl und HBr

In einem NMR-Rohr werden ca. 50 mg des Zweikernkomplexes in 0.5 ml C_6D_6 gelöst. Die Lösung wird mit einer stöchiometrischen Menge MeI oder I_2 versetzt bzw. durch Einleiten von HBr oder HCl (getrocknet über P_2O_5) gesättigt. Der Reaktionsverlauf wird NMR-spektroskopisch verfolgt und die Signale der gebildeten Komplexe durch Vergleich mit Literaturwerten oder mit denen analoger Verbindungen zugeordnet *. Es wurden folgende Reaktionen untersucht:

(a) (Cp)(2-MeC₃H₄)Pd₂(PMe₃)₂ + MeI, 1 Std., Raumtemp. Reaktionsprodukte:

* Zuordnung der Allylsignale gemäss

CpPd(PMe₃)Me [δ 5.83, d, J(PH) 1.5, C₅H₅; 0.86, d, J(PH) 10.2, PCH₃; 0.55, d, J(PH) 4.2, PdCH₃], (2-MeC₃H₄)Pd(PMe₃)I [δ 4.30, d, J(PH) 7, H₁; 3.30, bs, H₂; 2.90, d, J(PH) 9, H₄; 2.35, bs, H₃; 1.38, s, CCH₃; 1.13, d, J(PH) 9.5, PCH₃].

(b) $(Cp)(2-MeC_3H_4)Pd_2(PPh_3)_2 + MeI, 1$ Std., Raumtemp. Reaktionsprodukte: CpPd(PPh_3)Me [δ 5.75, d, J(PH) 1.3, C_5H_5 ; 0.62, d, J(PH) 3, PdCH₃, (2-MeC₃H₄)-Pd(PPh₃)I (siehe [16]).

(c) $(Cp)(2-t-BuC_3H_4)Pd_2(PPh_3)_2 + MeI, 1$ Std., Raumtemp. Reaktionsprodukte: CpPd(PPh_3)Me (siehe Versuch b), $(2-t-BuC_3H_4)Pd(PPh_3)I$ [δ 0.83, s, t-C₄<u>H</u>₉; Signale der Allylprotonen sind sehr breit und nicht genau zuzuordnen].

(d) $(Cp)(2-MeC_3H_4)Pd_2[P(O-o-Tol)_3]_2 + MeI, 1 Std., 55^{\circ}C.$ Reaktionsprodukte: CpPd[P(O-o-Tol)_3]Me [δ 5.23, d, J(PH) 2.2, C₅H₅; 0.97, d, J(PH) 3.5, PdCH_3], (2-MeC_3H_4)Pd[P(O-o-Tol)_3]I [δ 0.87, s, CCH₃; Signale der Allylprotonen sind nicht genau zuzuordnen].

(e) $(Cp)(2-t-BuC_3H_4)Pd_2[P(O-o-Tol)_3]_2 + MeI, 1 Std., 55^{\circ}C.$ Reaktionsprodukte: CpPd[P(O-o-Tol)_3]Me (siehe Versuch d), $(2-t-BuC_3H_4)Pd[P(O-o-Tol)_3]I[\delta 1.01, s, t-C_4H_9; Signale der Allylprotonen sind nicht genau zuzuordnen].$

(f) $(Cp)(2-MeC_3H_4)Pd_2(PMe_3)_2 + I_2$, 1 Std., Raumtemp. Reaktionsprodukte: CpPd(PMe_3)I [δ 5.62, d, J(PH) 2.4, C_5H_5], $(2-MeC_3H_4)Pd(PMe_3)I$ (siehe Versuch a), $(Cp)(I)Pd_2(PMe_3)_2$ [δ 5.48, t, J(PH) 2.2, C_5H_5 ; 1.20, vt, PCH_3].

(g) $(Cp)(2-t-BuC_3H_4)Pd_2(PPh_3)_2 + I_2$, 1 Std., Raumtemp. Reaktionsprodukte: CpPd(PPh_3)I [δ 5.43, d, J(PH) = 2.5, C_5H_5], (2-t-BuC_3H_4)Pd(PPh_3)I (siehe Versuch c).

(h) $(Cp)(2-MeC_3H_4)Pd_2[P(OPh)_3]_2 + I_2, 1$ Std., Raumtemp. Reaktionsprodukte: $CpPd[P(OPh)_3]I$ und $(2-MeC_3H_4)Pd[P(OPh)_3]I$ (siehe hierzu [4a]).

(i) $(Cp)(2-MeC_3H_4)Pd_2[P(OPh)_3]_2 + HCl, 1$ Std., Raumtemp. Reaktionsprodukte: $CpPd[P(OPh)_3]Cl$ und $(2-MeC_3H_4)Pd[P(OPh)_3]Cl$ (siehe hierzu [4a]).

(j) (Cp)(2-MeC₃H₄)Pd₂(PMe₃)₂ + HBr, 1 Std., Raumtemp. Reaktionsprodukte: (Cp)(Br)Pd₂(PMe₃)₂ [δ 5.48, t, *J*(PH) 2.2, C₅H₅; 1.22, vt, PCH₃], (2-MeC₃H₄)Pd-(PMe₃)Br [δ 4.23, d, *J*(PH) 7, H₁; 3.10, d, *J*(PH) 10.5, H₂; 2.60, bs, H_{3,4}; 1.45 s, CCH₃; 1.11, d, *J*(PH) 9.5, PCH₃].

(k) (Cp)(2-MeC₃H₄)Pd₂[P(O-o-Tol)₃]₂ + HBr, 1 Std., Raumtemp. Reaktionsprodukte: (Cp)(Br)Pd₂[P(O-o-Tol)₃]₂ [δ 5.49, t, J(PH) 2.5, C₅H₅], (2-MeC₃H₄)-(Br)Pd₂[P(O-o-Tol)₃]₂ [δ 3.63, t, J(PH) 7, H_{syn}; 0.58, t, J(PH) 3.2, CCH₃].

TABELLE 4

ELEMENTARANALYSEN DER ZWEIKERNKOMPLEXE (Cp)(2-RC3H4)M2L2

Komplex	Gef. (ber.) (%)	Zers. Pkt. (°C)		
	с	н	м	
IVe	48.77 (48.84)	8.34 (8.20)		62
IVo	43.23 (42.94)	6.84 (7.21)	28.96 (29.26)	83
IVp	59.52 (59.13)	5.41 (5.16)	20.45 (20.95)	55
Va	37.79 (37.14)	6.43 (6.23)		105
Vî	61.71 (60.47)	9.13 (8.80)	22.91 (23.81)	96
Vo	43.70 (43.74)	7.46 (7.34)	27.90 (28.70)	86
Vp	59.17 (59.49)	5.47 (5.29)	19.80 (20.67)	86
VIo	45.89 (45.99)	6.97 (7.72)		
vIII	27.66 (27.19)	4.58 (4.56)	58.57 (58.89)	97
х	40.52 (39.03)	6.53 (6.55)	46.73 (46.96)	65

Dank

Die vorliegende Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie durch Sachmittel sowie von den Firmen Degussa, BASF und CIBA-GEIGY Marienberg durch wertvolle Chemikalienspenden unterstützt. Frau Dr. G. Lange danken wir für die Aufnahme der Massenspektren, Herrn Dr. W. Buchner und Herrn C.-P. Kneis für die NMR-Messungen, Fräulein R. Schedl und Frau E. Ullrich für die Durchführung von Elementaranalysen.

Literatur

- 1 H. Werner und A. Kühn, Angew. Chem., 91 (1979) 447; Angew. Chem. Int. Ed. Engl., 18 (1979) 416.
- 2 Y. Kobayashi, Y. Iitaka und H. Yamazaki, Acta Crystallogr., B, 28 (1972) 899.
- 3 H. Werner, D. Tune, G. Parker, C. Krüger und D.J. Brauer, Angew. Chem., 87 (1975) 205; Angew. Chem. Int. Ed. Engl., 14 (1975) 185.
- 4 (a) H. Werner, A. Kühn, D.J. Tune, C. Krüger, D.J. Brauer, J.C. Sekutowski und Yi-Hung Tsay, Chem. Ber., 110 (1977) 1763; (b) H. Werner und A. Kühn, Angew. Chem., 89 (1977) 427; Angew. Chem., Int. Ed. Engl., 16 (1977) 412.
- 5 (a) A. Ducruix, H. Felkin, C. Pascard und G.K. Turner, Chem. Commun., (1975) 616; (b) G.K. Turner und H. Felkin, J. Organometal. Chem., 121 (1976) C 29; (c) H. Felkin und G.K. Turner, J. Organometal. Chem., 129 (1977) 429.
- 6 Ş. Otsuka, T. Yoshida, M. Matsumoto und K. Nakatsu, J. Amer. Chem. Soc., 98 (1976) 5850.
- 7 J. Chatt, F.A. Hart und H.R. Watson, J. Chem. Soc., (1962) 2537.
- 8 V. Harder und H. Werner, Helv. Chim. Acta, 56 (1973) 549.
- 9 A. Kühn und H. Werner, Publikation in Vorbereitung.
- 10 G. Parker und H. Werner, Helv. Chim. Acta, 56 (1973) 2819; siehe auch: H. Werner, Angew. Chem., 89 (1977) 1; Angew. Chem. Int. Ed. Engl., 16 (1977) 1.
- 11 W. Kuran und A. Musco, Inorg. Chim. Acta, 12 (1975) 187.
- 12 M. Aresta, C.F. Nobile und A. Sacco, Inorg. Chim. Acta, 12 (1975) 117.
- 13 P.W. Jolly, K. Jonas, C. Krüger und Yi-Hung Tsay, J. Organometal. Chem., 33 (1971) 109.
- 14 H. Werner und A. Kühn, Z. Naturforsch. B, 33 (1978) 1360.
- 15 D.J. Tune und H. Werner, Helv. Chim. Acta, 58 (1975) 2240.
- 16 J. Powell und B.L. Shaw, J. Chem. Soc. A, (1967) 1839.
- 17 Für nähere Angaben siehe: A. Kühn, Dissertation Univ. Würzburg, 1979.
- 18 H.C. Clark und A. Shaver, Can. J. Chem., 54 (1976) 2068.
- 19 N.M. Boag, J. Browning, C. Crocker, P.L. Goggin, R.J. Goodfellow, M. Murray und J.L. Spencer, J. Chem. Res. S, (1978) 228; id., ibid., M, (1978) 2962.
- 20 W. Wolfsberger und H. Schmidbaur, Synth. React. Inorg. Met-Org. Chem., 4 (1974) 149.
- 21' H. Hoffmann und P. Schellenbeck, Chem. Ber., 99 (1966) 1134; 100 (1967) 692.
- 22 W.J.C. Dyke und W.J. Jones, J. Chem. Soc., (1930) 2426.
- 23 W. Albert, Zulassungsarbeit Univ. Würzburg, 1977.
- 24 W.R. McClellan, H.H. Hohn, H.N. Cripp, E.L. Muetterties und B.H. Howk, J. Amer. Chem. Soc., 83 (1961) 1601.
- 25 B.E. Mann, B.L. Shaw und G. Shaw, J. Chem. Soc. A, (1971) 3537.
- 26 Inorg. Synth., 15 (1974) 80.
- 27 D.J. Mabbott, B.E. Mann und P.M. Maitlis, J. Chem. Soc. Dalton Trans., (1977) 294.